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Introduction 
 
 Ubiquitous, reliable, high data rate communication, carried by electromagnetic waves at 
optical frequencies, is an essential ingredient of our technological age.  Information theory 
seeks to delineate the ultimate limits on reliable communication that arise from the presence of 
noise and other disturbances, and to establish the means by which these limits can be 
approached.  Because electromagnetic fields are quantum mechanical, and high-sensitivity 
photodetection systems have long been limited by noises of quantum mechanical origin, 
information theory for optical communication channels should be couched in fully quantum 
terms.  Yet, this has seldom been the case for channel capacity studies and communication 
system designs for realistic, or even quasi-realistic, optical channels.  Thus, the main thrust of 
this program was to remedy this deficiency by putting information theory of important single-
user and multiple-user optical channels on firm, quantum-mechanical foundations.   
 

The most famous channel capacity formula is Shannon's result for the classical additive 
white Gaussian noise channel.  For a complex-valued channel model in which we transmit a 
and receive c = η1/2a + (1-η)1/2b, where 0<η<1 is the channel's transmissivity and b is a zero-
mean, isotropic, complex-valued Gaussian random variable that is independent of a, 
Shannon’s capacity is 
 

Cclassical = ln[1 + ηNs/(1-η)N] nats/use,     (1)  
 
with E(|a|2) ≤ Ns and E(|b|2) = N.  In the quantum version of this channel model, we control the 
state of an electromagnetic mode with photon annihilation operator a at the transmitter, and 
receive another mode with photon annihilation operator c = η1/2a + (1-η)1/2b, where b is the 
annihilation operator of a noise mode that is in a zero-mean, isotropic, complex-valued 
Gaussian state.  For lasercom, if quantum measurements corresponding to ideal optical 
homodyne or heterodyne detection are employed at the receiver, this quantum channel 
reduces to a real-valued (homodyne) or complex-valued (heterodyne) additive Gaussian noise 
channel, from which the following capacity formulas (in nats/use) follow: 
 

Chomodyne = 2-1ln[1 + 4ηNs/(2(1-η)N+1)]     (2)  
 

Cheterodyne = ln[1 + ηNs/((1-η)N+1)].      (3)  
 
The +1 terms in the noise denominators are quantum contributions, so that even when the 
noise mode b is unexcited these capacities remain finite, unlike the situation in Eq. (1).   
 

The classical capacity of the pure-loss bosonic channel — in which the b mode is 
unexcited (N = 0) — was shown in [1] to be Cpure-loss = g(ηNs) nats/use, where g(x) = 
(x+1)ln(x+1) - xln(x) is the Shannon entropy of the Bose-Einstein probability distribution with 
mean x.  This capacity exceeds the N = 0 versions of Eqs. (2) and (3), as well as the best 
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known bound on the capacity of ideal optical direct detection.  The ultimate capacity of the 
thermal-noise (N > 0) version of this channel is bounded below as follows, Cthermal ≥ g(ηNs + (1-
η)N) – g((1-η)N), and this bound was shown to be the capacity if the thermal channel obeyed a 
certain minimum output entropy conjecture [2]. This conjecture states that the von Neumann 
entropy at the output of the thermal channel is minimized when the a mode is in its vacuum 
state.   Considerable evidence in support of this conjecture has been accumulated [3], but it 
has yet to be proven. Nevertheless, the preceding lower bound already exceeds Eqs. (2) and 
(3) as well as the best known bounds on the capacity of direct detection.  A principal goal of 
the research program “Information Transmission and Entanglement Distribution over Bosonic 
Channels,” Contract Number FA8750-06-2-0069, was to seek further evidence in support of — 
and perhaps a complete proof for — this minimum output entropy conjecture and the capacity 
formula for the thermal-noise channel.  A second major goal of this program was to extend the 
single-user capacity theory to a multi-user broadcast scenario, as could be encountered in 
optical networking.  A third goal of the program was to evaluate the capacity when classical 
communication over a bosonic channel was augmented by the availability of shared 
entanglement between the sender and receiver when the entanglement distribution and the 
classical communication were both subject to a constraint on the total average photon number 
used at the transmitter.  In this report we briefly summarize the results that we have obtained 
in pursuit of the preceding goals.  Additional information on research under this program can 
be obtained from the documents listed in the publications section at the end of this report. 
 
Bosonic Broadcast Channel 
 

A broadcast channel is the congregation of communication media connecting a single 
transmitter to two or more receivers. In general, the transmitter encodes and sends out 
independent information to each receiver in a way that each receiver can reliably decode its 
respective information.  The two-user, lossless bosonic broadcast channel takes the following 
form.  The transmitter (Alice) controls a single-mode electromagnetic field with photon 
annihilation operator a.  Alice’s objective is to reliably communicate independent information 
streams to two receivers — Bob and Charlie — that observe single-mode electromagnetic 
fields whose photon annihilation operators are b = η1/2a + (1-η)1/2e and c = -(1-η)1/2a + η1/2e, 
respectively, where e is the photon annihilation operator of an environmental mode that is in its 
vacuum state.  We first showed [4] that when coherent-state encoding is employed in 
conjunction with coherent detection, the bosonic broadcast channel is equivalent to a classical 
degraded Gaussian broadcast channel whose capacity region is known, and known to be dual 
to that of the classical Gaussian multiple-access channel [5].  Thus, under these coding and 
detection assumptions, the capacity region of the bosonic broadcast channel is dual to that of 
the multiple-access bosonic channel with coherent-state encoding and coherent detection.  To 
treat more general transmitter and receiver conditions, we used a limiting argument to apply 
the degraded quantum broadcast-channel coding theorem for finite-dimensional state spaces 
[6] to the infinite-dimensional bosonic channel with an average photon-number constraint.  For 
the two-user lossless case, with η>1/2, we showed [5] that  
 

RB ≤ g(ηβNs)   and   RC ≤ g((1-η)Ns)  - g((1-η)βNs), for 0 ≤ β ≤ 1,  (4) 
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is an inner bound on the capacity region, and that this inner bound specifies the capacity 
region if a new minimum output entropy conjecture is satisfied.  Interestingly, this capacity 
region is not dual to that of the bosonic multiple-access channel with coherent-state encoding 
and optimum measurement that was found in [7].    
 
 The two minimum output entropy conjectures — one that establishes the capacity of the 
lossy bosonic channel with thermal noise and the other that establishes the capacity region of 
the bosonic broadcast channel — appear to be duals.  We showed that they were equivalent 
when the input states are restricted to be Gaussian [5].  We also proved that the second 
minimum output entropy conjecture is true when Wehrl entropy is used in lieu of von Neumann 
entropy [5].  As yet, however, a full proof of the second minimum output entropy conjecture has 
not been obtained.    
 
The Entropy Photon-Number Inequality 
 

The Entropy Power Inequality (EPI) from classical information theory is widely used in 
coding theorem converse proofs for Gaussian channels. By analogy with the EPI, we 
conjectured [8] its quantum version, viz., the Entropy Photo-number Inequality (EPnI). The EPI 
states that if X and Y are statistically independent, n-dimensional, continuous random vectors 
with differential Shannon entropies h(X) and h(Y), respectively, and associated entropy powers 
defined by 

 
 P(X) = [exp(h(X)/n)]/2πe]    and   P(Y) = [exp(h(Y)/n)]/2πe],  (5) 

 
where e is the base for natural logarithms, then all of the following are true [9]: 
 
  P(Z) ≥ ηP(X) + (1-η)P(Y)       (6) 
 
  h(z) ≥ h(Z)         (7) 
 
  h(Z) ≥ ηh(X) + (1-η)h(Y).       (8) 
 
In these expressions, 0 ≤ η ≤ 1 and  
 
  Z = ηX + (1-η)Y     and     z = ηx + (1-η)y,    (9) 
 
where x and y are statistically independent, n-dimensional, Gaussian random vectors with 
independent identically-distributed components of variances P(X) and P(Y), respectively.   
 
 Our conjectured Entropy Photon-number Inequality is as follows.  Let a and b be n-
dimensional column vectors of photon annihilation operators that are in a product state, i.e., 
their joint density operator satisfies ρab = ρa ⊗ ρb.  Define a new vector of photon annihilation  
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operators by the beam splitter relation c = η1/2a + (1-η)1/2b, where 0 ≤ η ≤ 1.  The entropy 
photon-numbers associated with the density operators ρa and ρb are  
 
  N(ρa) = g-1(S(ρa)/n)    and   N(ρb) = g-1(S(ρb)/n),    (10) 
 
where S(ρ) is the von Neumann entropy of the state specified by the density operator ρ and g-1 
is the inverse of the monotonically increasing function g(x).  The two equivalent forms of our 
conjectured EPnI are [8]: 
 
  N(ρc) ≥ ηN(ρa) + (1-η)N(ρb)       (11) 
 
  S(ρç) ≥ S(ρc),         (12) 
 
where ç is an n-dimensional column vector of photon annihilation operators whose joint density 
operator, ρç, is the product of n thermal states each with average photon number ηN(ρa) + (1-
η)N(ρb).  So far we have shown that the minimum output entropy conjectures needed to prove 
the capacity of the lossy bosonic channel with thermal noise and the bosonic broadcast 
channel are simple consequences of the EPnI.  Thus, if the proof techniques employed for the 
EPI can be extended to apply to the EPnI, we will have established the capacities of the lossy 
bosonic channel with thermal noise and the bosonic broadcast channel.  Furthermore, in very 
recent work [10], we have shown that our second minimum output entropy conjecture suffices 
to prove the classical capacity of the bosonic wiretap channel, which in turn would also prove 
the quantum capacity of the lossy bosonic channel.  Hence, proving the EPnI would have the 
immediate consequence of establishing those capacities as well. 
 
Entanglement-Assisted Capacity 
 
 Previous work [11] had shown that the entanglement-assisted capacity of the lossy bosonic 
channel exceeded what could be accomplished without such nonclassical help.  That work 
imposed an average photon number constraint on the classical information transmission, but 
no such constraint was imposed on the entanglement distribution.  We have shown that when 
both the classical communication and the entanglement distribution are subject to a constraint 
on the total average photon number employed for both processes, then there is no benefit — 
in classical communication capacity — to be gained from entanglement distribution.  However, 
such benefit might accrue in a continuous-time (multi-mode) setting wherein the classical 
information is bursty and there are both average and peak photon-flux constraints.    
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